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directly to the high-resolution discrete equations, thus allowing to obtain a very good e�ciency of

the multigrid steady-state solver. This is the only high-resolution scheme known to us that has

this property. The two-dimensional scheme is presented in details. It is formulated on triangular

(structured and unstructured) meshes and can be interpreted as a genuinely two-dimensional extension

of the Roe scheme. The quality of the solutions obtained using this scheme and the performance of

the multigrid algorithm are illustrated by the numerical experiments. Construction of the three-

dimensional scheme is outlined brie
y as well.
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1. Introduction. A need for a fast and accurate steady-state compressible 
ow
solver exists in many areas of science and engineering. Perhaps, such a need is par-
ticularly acute for the problem of aerodynamic design. In this case the steady-state
solutions of the compressible 
ow past bodies have to be computed repeatedly, each
time with variations in the body's geometry. This allows to �nd the shape with op-
timal in a certain sense aerodynamic parameters relying on computations only. Thus
the necessity of the costly wind-tunnel experiments can be largely reduced.

The search for the genuinely multidimensional schemes for the compressible Euler
equations was motivated by the expectation, that they will provide new possibilities
(comparing to the dimensionally split schemes, which are of the common use now),
like:

� capturing physics of the 
uid 
ow more accurately;
� constructing a more e�cient steady-state (multigrid) solver.

Considerations regarding the �rst point can be found in [14],[15]. The main motivation
for constructing the truly multidimensional scheme in this work is the improvement
of multigrid e�ciency. It was observed in [20] that pointwise Gauss-Seidel relaxation
is unstable when applied directly to the high-resolution dimensionally split scheme
even in the simple case of two-dimensional scalar advection equation. Therefore, the
steady-state Euler solver constructed in [21] relies on the defect correction technique,
which is not a fully e�cient way to utilize multigrid methods. Another possibility
to avoid this di�culty is to use a multigrid algorithm that employs a well-known
multi-stage Runge-Kutta relaxation technique which was developed in [9],[7],[8].

However, any further improvement of the multigrid e�ciency requires to address
this problem directly: it is necessary to develop a new high-resolution (at least at
the steady-state) discrete scheme, such that Gauss-Seidel relaxation is stable when
applied directly to the resulting discrete equations. This was the main motivation for
constructing the genuinely two-dimensional advection scheme in the control volume
context in [17],[18]. The novel feature of this scheme was the two-dimensional limiter,
i.e. the limiter function that relies on the ratio of two �nite di�erences in di�erent
directions.

There has also been developed another class of genuinely two-dimensional ad-
vection schemes { the so-called \
uctuation-splitting" schemes. (see [6],[22]). These
schemes are also equipped with a nonlinear mechanism that allows to combine high-
resolution and positivity property. Several variants of such a nonlinear mechanism
were devised using some geometric considerations. The remarkable feature of this
approach is the simplicity of the schemes formulated on unstructured triangular grids.

The strong relationship between the 
uctuation-splitting and control volume ad-
vection schemes was established in [19]. As a result, the 
uctuation-splitting scheme
that utilizes the two-dimensional limiters was constructed. The action of the limiter
function can be given a purely algebraic interpretation.

Even though some genuinely two-dimensional advection schemes where available
already several years ago, the task of extending these ideas to the systems of equations
appeared to be rather di�cult.

The \algebraization" of the advection scheme formulation appeared to be crucial
for the purpose of this work - constructing a truly multidimensional scheme for the
Euler system. The resulting scheme is capable of producing high-resolution steady-
state solutions. Its unique feature is that the Gauss-Seidel relaxation is stable when
applied directly to the high resolution discrete equations.
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The paper is organized as follows: in x2 we give a brief introduction into the

uctuation-splitting approach for the scalar advection equations and present consider-
ations for extending of this approach to the systems of equations in two dimensions. In
x3 we take a closer look on the Roe scheme for the Euler equations in one dimension.
Then we construct a truly two-dimensional scheme for the Euler systems on structured
(in x4) and unstructured (x5) triangular grids. In x6 we outline �rst as a preliminary
the construction of the three-dimensional advection scheme. Then we present a truly
three-dimensional scheme for the Euler system. x7 describes the multigrid algorithm
that employs the constructed truly two-dimensional scheme. Numerical experiments
are presented in x8, followed by discussion and conclusions in x9.

2. Preliminaries and motivation. In the �rst part of this section we illustrate
the 
uctuation-splitting approach, �rst on the example of the scalar advection in one
dimension. Then we present the construction of a simple truly two-dimensional advec-
tion scheme that relies on two-dimensional limiters. In the second part we discuss the
di�culties that arise when trying to apply the scalar advection schemes to discretize
the systems of equations in multidimensions.

2.1. Fluctuation-splitting approach. We shall give here a brief description
of the 
uctuation-splitting advection scheme in one and two dimensions (for details
see [6],[19]). These schemes are required to have properties of positivity and linearity
preserving. We shall de�ne here the positivity property.

Definition 2.1. A scheme is said to be of the positive type if any solution value
on the new time level obtained by this scheme can be written as a positive combination
of the values from the previous time level.

Solutions obtained by the means of positive schemes will satisfy a certain maxi-
mum principle and, therefore, do not exhibit oscillatory behavior in presence of dis-
continuities.

The notion of linearity preserving is used to characterize high-resolution at the
steady-state schemes. It is trivial in one dimension. Therefore, we shall give its precise
de�nition in x2.1.2.

2.1.1. Advection in one dimension. Consider a linear one-dimensional ad-
vection equation

ut + aux = 0(1)

We are interested in solving it numerically on a grid with meshsize h (see Fig.1).
Fluctuation is de�ned as the residual of the equation on the linear element multiplied
by the volume of the element. In our case the 
uctuation on the segment [i� 1; i] is
de�ned as the residual of (1) on this segment multiplied by its length h

R = �a(ui � ui�1)

The numerical solution can be interpreted as a two-stage process
� compute the 
uctuation on each element and distribute (split) it among the
vertices of this element;

� update the solution at each vertex due to the accumulated portions of 
uctu-
ations.
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In our case if the 
uctuation on the segment [i � 1; i] is distributed equally between
the adjacent gridpoints

hun+1i�1 = huni�1 +
�

2
R + C:O:E:

hun+1i = huni +
�

2
R + C:O:E:

we obtain the central scheme, which is neither positive nor stable, though second order
accurate in space. Here \C:O:E:" stands for \contributions from other elements" and
will be omitted in the remainder of this paper.

The upwind scheme can be obtained by adding a proper amount of the arti�cial
viscosity to the central scheme. The 
uctuation distribution formulae thus become

hun+1i�1 = huni�1 + �
2 (R � �R)

hun+1i = huni + �
2 (R + �R);

(2)

where

�R = �jaj(ui � ui�1) = sign(a)R

is the arti�cial viscosity.
It is easy to see that in this case the entire 
uctuation on the segment [i � 1; i]

contributes either to the solution update either at the left or at the right nodes of the
segment depending on the advection speed direction (sign).

2.1.2. Two-dimensional advection. Consider a linear two-dimensional advec-
tion equation

ut + aux + buy = 0

The 
uctuation on the triangle T (see Fig.2) is given by

R = Rx + Ry ;(3)

where

Rx = �h
2 [a(u0 � u3)]

Ry = �h
2 [b(u3 � u4)]

Assuming that the 
uctuation distribution formulae in this case are

h2un+10 = h2un0 +
�
2(R

x + �Rx)
h2un+13 = h2un3 +

�
2 [(R

x � �Rx) + (Ry + �Ry)]
h2un+14 = h2un4 +

�
2(R

y � �Ry)
(4)

where �Rx; �Ry are the arti�cial viscosity terms de�ned by

�Rx = sign(a)Rx

�Ry = sign(b)Ry ;
(5)

we obtain the dimensional upwind scheme which is positive, but only �rst order accu-
rate.
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Definition 2.2. The 
uctuation-splitting scheme is called linearity preserving if
whenever the 
uctuation on the triangle T vanishes then the scheme leads to a zero
update in each of the three vertices of the triangle.

It was observed in [6] that the linearity-preserving schemes on structured grids
produce numerical solutions that are second-order accurate in the steady state.

Introduce the following quantities

Rx� = Rx + Ry	(Q)

Ry� = Ry +Rx	(Q)
Q

(6)

where

Q = �R
x

Ry
(7)

and 	 is a Lipschitz continuous limiter function such that

0 � 	(Q) � 1; 0 � 	(Q)

Q
� 1(8)

and

	(1) = 1(9)

Substituting Rx� ; Ry� for Rx; Ry into (4) and (5) we obtain a linearity preserving
(second order accurate at the steady-state in the case of structured grid) scheme.
Using the following identity

Ry	(Q) � �Rx	(Q)

Q
(10)

it is easy to see that the scheme de�ned by (4),(5) and (6) is of the positive type.
It is also obvious from (10) that such scheme is conservative because

Rx� +Ry� � Rx + Ry � R

(for more details see [19]).

2.2. Hyperbolic systems of equations. We shall explain here what is the
main obstacle encountered when constructing a truly two-dimensional numerical scheme
for a hyperbolic system of equations. We shall also describe what is our approach
to overcome it. The understanding of the basic di�erences between one- and two-
dimensional cases is required for this purpose. These di�erences will be illustrated on
the linear systems of equations.

2.2.1. One dimension. Consider a system of conservation laws in one dimen-
sion

ut + f(u)x = 0(11)

For the purpose of the discussion here it is su�cient to look at the linear constant
coe�cient case of (11). Consider a the following system of partial di�erential equations

ut + Aux = 0(12)
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where A is N �N matrix. The system (12) is said to be hyperbolic if matrix A has a
complete set of real eigenvalues.

Denote T - the matrix of right eigenvectors of A. Then

� = T�1AT

is a diagonal matrix. Introducing characteristic variables

w = T�1u

(12) can be rewritten as a set of N decoupled advection equations:

wt + �wx = 0(13)

- a set ofN decoupled advection equations. It is clear from (13) that a one-dimensional
advection scheme can be applied in a straightforward way to solve a (linear) hyperbolic
system of equations in one dimension. A discussion concerning the nonlinear Euler
system in one dimension will be presented in the x3.

2.2.2. Two dimensions. A linear system of partial di�erential equations in two
dimensions of the following form

ut + Aux +Buy = 0(14)

is said to be hyperbolic if the matrix

A = cos�A+ sin �B

has a complete set of real eigenvalues for 8� : 0 � � � 2�. In this case there exist
matrices TA and TB such that T�1A ATA and T�1B BTB are diagonal. This is usually
utilized to construct the so-called dimensionally split schemes.

However, matrices A and B in general do not commute. Therefore, TA 6= TB, i.e.
a hyperbolic system in two dimensions cannot be represented as a set of decoupled
advection equations (unlike in one-dimensional case). This means that a truly two-
dimensional advection scheme cannot be applied in a straightforward way to discretize
a hyperbolic systems of equations.

Much of the research e�ort in the last several years concentrated on �nding a
way to apply the multidimensional advection schemes to discretize the hyperbolic
systems of equations, in particular to the Euler equations of gas dynamics. One of
the major directions was the so-called wave modeling (see [14],[5]). This approach
concentrated on �nding a way to represent (locally) the physics of two-dimensional

ow of a compressible 
uid by a �nite number of simple waves, each one having an
associated advection equation.

The approach we present here is concerned not with applying an advection scheme
to discretize a system of equations in two dimensions, but rather with applying to the
systems of equations the same strategy that was used when constructing a scalar
advection scheme. The construction of the genuinely two-dimensional scheme for
the Euler will be presented in x4 for the structured grids and in x5 for the general
unstructured grids case.
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3. Euler equations in one dimension and Roe scheme. Euler equations of
gas dynamics in one dimension can be written as follows

ut + F (u)x = 0;(15)

where

u =

0B@ �
�u

e

1CA ; F (u) =

0B@ �u
�u2 + p

�uH

1CA ;(16)

the enthalpy H is de�ned by

H =
e + p

�
=

c2


 � 1
+

1

2
u2;(17)

the speed of sound

c =

r

p

�
(18)

and the pressure

p = (
 � 1)(e� 1

2
�u2)(19)

The Jacobian matrix

A =
@F

@u
(20)

has real eigenvalues only.
In order to apply the upwind di�erencing approach to the nonlinear system (15)

a particular conservative linearization procedure was introduced by Roe [13]. For two
states ul and ur a matrix ~A(ul;ur) was constructed having certain properties called
together Property U. We address the reader to [13] for the details. Let us only mention
here one of these properties: the following identity holds for any ul;ur:

~A(ul;ur) � (ur � ul) � F (ur)� F (ul):(21)

3.1. Fluctuation-splitting formulation. De�ne the 
uctuation on the consid-
ered element (segment [i� 1; i], see Fig.1)

R = �[F (ui)� F (ui�1)]:(22)

Following the Roe-linearization procedure we assume that the quantities which vary
linearly on the segment [i � 1; i] are the elements of the so-called parameter vector
(see [13])

m = (m1; m2; m3; m4)
T =

p
�(1; u; v;H)T:(23)

Therefore, its average value on [i� 1; i] is

~m =
mi�1 +mi

2
(24)
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Thus the following Roe-averaged quantities can be de�ned

�� = ~m2
1

~u = ~m2= ~m1
~H = ~m3= ~m1

(25)

and

~c2 = (
 � 1)( ~H � ~u2

2
)(26)

Introducing the Roe-averaged Jacobian ~A � ~A(ui�1;ui) and recalling (21) we can
rewrite the 
uctuation (22) in the following form

R = � ~A � (ui � ui�1):(27)

Having in mind the construction of an upwind scheme, it is convenient to use the
following representation of the matrix ~A (see [13])

~A = ~T ~�~T �1;(28)

where ~� is a diagonal matrix

~� =

0B@ �1 0 0
0 �2 0
0 0 �3

1CA ;(29)

where

�1 = ~u; �2;3 = ~u� ~c

are the eigenvalues and ~T = ( ~E
1
; ~E

2
; ~E

3
) is the matrix of right eigenvectors of ~A

~E
1
=

0B@ 1
~u

~u2=2

1CA ; ~E
2
=

0B@ 1
~u� ~c
~H � ~u~c

1CA ; ~E
3
=

0B@ 1
~u + ~c
~H + ~u~c

1CA :(30)

The 
uctuation-splitting formulation of the Roe scheme can be written as follows

hun+1
i�1 = hun

i�1 + �
2 (R+ �R)

hun+1
i = hun

i + �
2 (R� �R);

(31)

where

�R = � ~T j~�j(wi �wi�1)(32)

is the arti�cial viscosity, and

w = ~T�1u(33)

are the so-called characteristic variables.
Alternatively, the arti�cial viscosity can be also written as

�R = �j ~Aj(ui � ui�1)(34)

or

�R = �sign( ~A)R(35)
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3.2. Roe scheme revisited. It is convenient for the purpose of this work to
introduce the following auxiliary variables (s; u; p)T , where

ds = d�� dp

c2
(36)

is the entropy. The non-conservative formulation of the Euler equations in these
variables takes the following form

st + usx = 0
�ut + �uux + px = 0
pt + upx + �c2ux = 0

(37)

Introduce the 
uctuations of the Euler equations in the auxiliary variables

r = � ~A �
0B@ si � si�1

��(ui � ui�1)
pi � pi�1

1CA ;(38)

where

~A =

0B@ ~u 0 0
0 ~u 1
0 ~c2 ~u

1CA(39)

It can be easily veri�ed that

R = Car;(40)

where

Ca =

0B@ 1 0 1=~c2

~u 1 ~u=~c2

~u2=2 ~u 1=(
 � 1) + u2=(2c2)

1CA(41)

Therefore, the Roe scheme (31) can be written as follows

hun+1
i�1 = hun

i�1 + �
2Ca(r + �r)

hun+1
i = hun

i + �
2Ca(r � �r)

(42)

where the arti�cial viscosity

�r = C�1a
�R = �C�1a

~T j~�j[wi �wi�1](43)

with

C�1a =

0B@ 1� (
 � 1)~u=(2~c2) (
 � 1)~u=~c2 �(
 � 1)=~c2

�~u 1 0
(
 � 1)~u2=(2~c2) �(
 � 1)~u 
 � 1

1CA(44)

We can also write

�r = �j ~Aj �
0B@ si � si�1

��(ui � ui�1)
pi � pi�1

1CA(45)
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or

�r = sign( ~A)r(46)

It is evident from (43) and (45) that the matrix of right eigenvectors of ~A is

~T = C�1a
~T

or ~T = (~e1; ~e2; ~e3) where

~e1 =

0B@ 1
0
0

1CA ; ~e2 =

0B@ 0
�~c
~c2

1CA ; ~e3 =

0B@ 0
~c
~c2

1CA(47)

Remark 3.1. It is obvious from the structure of the matrix ~T that the auxiliary
variable s coincides with the �rst element of the characteristic variable vector (33)

w1 = s(48)

Denote

M = sign( ~A)

In order to make a computer program more e�cient it is useful to write an explicit
expression for the matrix M . It is easy to see that in the supersonic case

M sup = sign(~u) � I(49)

where I is a 3� 3 unity matrix.
Some algebra reveals that in the subsonic case matrix sign( ~A) has a very simple

structure as well

M sub =

0B@ sign(~u) 0 0
0 0 1=~c
0 ~c 0

1CA(50)

The second and third rows mean that the arti�cial di�usion added to the momentum
equations is proportional to the 
uctuation of the pressure equation and vice versa.

Remark 3.2. The auxiliary variables formulation (37) of the Euler equations
is, perhaps, the simplest way to write the Euler equations. The usefulness of this
formulation will become even more evident in xx4,6.

4. Construction of the two-dimensional Euler scheme. Euler equations of
gas dynamics in two dimension can be written as follows

ut + F (u)x +G(u)y = 0;(51)

where

u =

0BBB@
�
�u

�v
e

1CCCA ; F (u) =

0BBB@
�u

�u2 + p

�uv
�uH

1CCCA ; G(u) =

0BBB@
�v
�uv

�v2 + p
�vH

1CCCA(52)
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where the enthalpy H is de�ned by

H =
e + p

�
=

c2


 � 1
+
u2 + v2

2
;(53)

the speed of sound

c =
r

p

�
(54)

and the pressure

p = (
 � 1)(e� �
u2 + v2

2
)(55)

The quasilinear non-conservative formulation of the Euler system in auxiliary variables
(s; u; v; p) can be introduced in two dimensions as well

st + usx + vsy = 0
�ut + �uux + �vuy + px = 0
�vt + �uvx + �vvy + py = 0
pt + upx + vpy + �c2(ux + vy) = 0

(56)

where ds = d�� dp

c2
.

Remark 4.1. Note that the entropy (s) evolution is subject to the two-dimensional
advection equation, which is locally decoupled from the rest of the system.

The 
uctuation of the system (51) de�ned over the triangle T

R =

Z Z
ut = �

Z Z
(F x +Gy) dx dy = �ST

h bF x + bGy

i
(57)

where bF x; bGy are some averaged values of the 
ux derivatives over the triangle T .
Our construction of the truly two-dimensional Euler scheme utilizes the two di-

mensional extension (Roe, Struijs and Deconinck [16]) of the Roe conservative lin-
earization for one-dimensional case. Therefore, following the procedure developed in
[16], we assume that the quantity which varies linearly over an element is the \param-
eter vector"

m =
p
�(1; u; v;H)T(58)

and its averaged value on the triangle T is given by the following

~m =
m1 +m2 +m3

3
(59)

Roe-averaged quantities can be introduced

~u = ~m2= ~m1

~v = ~m3= ~m1
~H = ~m4= ~m1

(60)

and

~c2 = (
 � 1)[ ~H � 1

2
(~u2 + ~v2)](61)
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Fluctuations of the Euler system in the auxiliary variables can be presented as

r = rx + ry;(62)

where

rx = �ST ~A � (csx;d�ux;d�vx;cpx)T
ry = �ST ~B � (csy ;d�uy ;d�vy ;cpy)T

with

~A =

0BBB@
~u 0 0 0
0 ~u 0 1
0 0 ~u 0
0 ~c2 0 ~u

1CCCA ; ~B =

0BBB@
~v 0 0 0
0 ~v 0 0
0 0 ~v 1
0 0 ~c2 ~v

1CCCA
and ST = h2=2 is the area of the triangle T , and

c�x = 2 ~m1(m1)x(63) d�ux = ~m1(m2)x � ~m2(m1)x(64) d�vx = ~m1(m3)x � ~m3(m1)x(65)

cpx =

 � 1



[( ~m4(m1)x + ~m1(m4)x) + ( ~m2(m2)x + ~m3(m3)x)](66)

The corresponding terms involving derivatives in y direction can be written in the
analogous manner.

Introducing the matrix

Ca =

0BBB@
1 0 0 1=~c2

~u 1 0 ~u=~c2

~v 0 1 ~v=~c2

(~u2 + ~v2)=2 ~u ~v 1=(
 � 1) + (~u2 + ~v2)=(2~c2)

1CCCA(67)

we can de�ne

Rx = Car
x

Ry = Car
y(68)

It can be easily veri�ed that

Rx = �STdF x

Ry = �STdGy;
(69)

wheredF x;dGy are the same averaged 
ux derivative values as de�ned in [16]. It is also
obvious that the entire 
uctuation

R = Rx +Ry = Ca(r
x + ry) = Car(70)

Consider triangle T as illustrated on Fig.2. The 
uctuation is distributed accord-
ing to the following formulae:

Sun+11 = Sun1 + �
2Ca(rx � �rx)

Sun+12 = Sun2 + �
2Ca[(r

x + �rx) + (ry � �ry)]
Sun+13 = Sun3 + �

2Ca(ry + �ry)

(71)
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De�ning

�rx = sign( ~A)rx

�ry = sign( ~B)ry
(72)

we obtain the scheme that is similar to the standard Roe dimensionally split scheme.
The only di�erence is in the linearization procedure.

We can construct now a (linearity preserving) second order accurate scheme. First,
we shall introduce vectors rx

�

; ry
�

with their elements de�ned by

rx
�

i = rxi +	(qi)r
y
i

ry
�

i = ryi +
	(qi)
qi

rxi
(73)

for i = 1; 2; 3; 4, where

qi = �r
x
i

ryi
(74)

and 	 is a (non-compressive) limiter.
Substituting rx

�

; ry
�

for rx; ry in (71) and (72) we obtain a linearity preserving
(second order accurate in this case) scheme. This is because if

r = 0

then

rx
�

= ry
�

= 0

as well. Therefore, the update of any variable in all the three vertices of the triangle
T due to the 
uctuation on this triangle is zero.

The resulting scheme is also conservative since

r � rx + ry � rx� + ry�

Denote

Mx = sign( ~A)

My = sign( ~B)

It is interesting to note that

Mx =

(
M sub

x ; if j~uj � ~c
M sup

x ; if j~uj > ~c;
(75)

and

My =

(
M sub

y ; if j~vj � ~c
M sup

y ; if j~vj > ~c;
(76)

where

M sub
x =

0BBB@
sign(~u) 0 0 0

0 0 0 1=~c
0 0 sign(~u) 0
0 ~c 0 0

1CCCA ;(77)
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M sub
y =

0BBB@
sign(~v) 0 0 0

0 sign(~v) 0 0
0 0 0 1=~c
0 0 ~c 0

1CCCA ;(78)

and

M sup
x = sign(~u)I;(79)

M sup
y = sign(~v)I:(80)

5. General unstructured grid formulation. Consider an unstructured tri-
angular grid covering out domain and triangle T belonging to this grid (see Fig.4).
Denote hi length of the ith face of this triangle, ~ei a unit vector along the ith face
in clockwise direction. Denote also ~ni a unit inward normal to the ith face and ST -
area of the triangle T . In this section we shall describe �rst the general (unstructured
grid) version of 
uctuation-splitting advection scheme. Then we shall construct the
genuinely two-dimensional numerical scheme for the compressible Euler system, also
formulated for the unstructured meshes.

5.1. Advection scheme. Consider a linear constant coe�cient advection equa-
tion

ut + ~� � ~ru = 0(81)

Consider a non-orthogonal coordinate system �; � aligned with the vectors e1; e2 (see
Fig.4) and introduce the following quantities

� =
~� � ~n2
�

; � =
~� � ~n1
�

(82)

where

� = ~e1 � ~n2 � ~e2 � ~n1:(83)

Then Eq.(81) can be written in the coordinate system �; �

ut + �u� + �u� = 0(84)

The 
uctuation of the Eq.(81)

R = R� +R� ;(85)

where

R� = �ST [�(u3 � u1)=h1]
R� = �ST [�(u2 � u3)=h2]

(86)

The 
uctuation distribution formulae

S1u
n+1
1 = S1u

n
1 +

�
2 (R

� � �R�)

S2u
n+1
2 = S2u

n
2 +

�
2 (R

� + �R�)
S3u

n+1
3 = S3u

n
3 +

�
2 [(R

� + �R�) + (R� � �R�)]

(87)
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with the arti�cial viscosity terms de�ne as follows

�R� = sign(�)R�

�R� = sign(�)R�(88)

result in a positive type upwind scheme. Introduce the following quantity

Q = �R�

R�
(89)

De�ne

R�� = R� + R�	(Q)

R�� = R� + R�	(Q)
Q

(90)

and substituting R�� ; R�� instead of R� ; R� in (87),(88). Using the identity

R�	(Q) � �R�	(Q)

Q
(91)

we can rewrite R�� ; R�� in the following form

R�� = R�(1� 	(Q)
Q

)

R�� = R�(1�	(Q))
(92)

it is easy to verify that the resulting scheme is positive if

0 � 	(Q) � 1; 0 � 	(Q)

Q
� 1(93)

and linearity preserving if

	(1) = 1(94)

Note also that

R = R�� +R�� = R� +R� :(95)

Therefore, the constructed scheme is conservative.
There are two di�erences between the formulated scheme and the typical 
uctu-

ation splitting advection schemes (see [6],[22],[19])
1. no distinction is made between triangles with two out
ow faces (Type I) and

one out
ow face (Type II)
For the advection problem this implies more computational work since limiter
function has to be evaluated on all the triangles (not only on those of Type
II). However, for the Euler system no signi�cant savings can be made by this
distinction, since limiters have to be used in on all the triangles anyway (see
x5.2).

2. the derivatives are approximated by �nite di�erences along the faces which
were chosen arbitrarily and are not necessarily both in
ow or out
ow (� and
� are not necessarily of the same sign).
In case of the advection equation choice of the faces which are both either
in
ow or out
ow for derivative approximation provides better resolution of
discontinuities. For the systems, however, the question of the optimal choice
is more complex (see remark in x8). Therefore, we presented here the con-
struction of the advection scheme with no assumption made about the signs
of � and �.
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5.2. Euler system. The auxiliary variable formulation of the Euler system can
be written in the following vector form

st + ~U � rs = 0

�~Ut + �~U � r~U +rp = 0

pt + ~U � rp+ �c2r � ~U = 0

(96)

where ~U = (u; v)
Consider again triangle T on Fig.4 and the non-orthogonal coordinate system

(�; �) aligning with two of the faces of this triangle (or the unit vectors ~e1; ~e2) De�ne
the following quantities

U = ~U � ~e2; V = ~U � ~e1:(97)

and

� =
~U � ~n1
�

; � =
~U � ~n2
�

:(98)

We can rewrite the Euler system (96) in this new non-orthogonal coordinates (�; �)

st + �s� + �s� = 0
�Ut + ��U� + ��U� + p� = 0
�Vt + ��V� + ��V� + p� = 0
pt + �p� + �p� + �c2(�� + ��) = 0

(99)

In order to compute the 
uctuation of the system

r = r� + r�(100)

on a general triangle T we follow again the two-dimensional linearization procedure
presented in [16] and assume the quantity varying linearly on the triangle is the pa-
rameter vector

m =
p
�(1; u; v;H)T(101)

and its averaged value on the triangle T is given by the following

~m =
m1 +m2 +m3

3
(102)

Then (similarly to the structured grid case)

r� = �ST

0BBB@
~� bs�
~�d�U� +cp�
~�d�V�
~�cp� + ~c2d���

1CCCA(103)

where

c�� = 2 ~m1(m1)�(104)

cp� =

 � 1



[( ~m4(m1)� + ~m1(m4)�) + ( ~m2(m2)� + ~m3(m3)�)](105)

bs� = cp� � ~c2c��(106)
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d
�~U� =

 d�u�d�v�
!
=

 
~m1(m2)� � ~m2(m1)�
~m1(m3)� � ~m3(m1)�

!
(107)

r� can be evaluated in a similar way. De�ning the following set of conservative vari-
ables

�u =

0BBB@
�
�U
�V
e

1CCCA(108)

and denoting �R the 
uctuations of the Euler system in these variables on triangle T ,
it can be easily veri�ed that the 
uctuations in the following relation holds

�R = Ca � r(109)

where

Ca =

0BBB@
1 0 0 1=~c2

~U 1 0 ~U=~c2
~V 0 1 ~V=~c2
~U2=2 ~� ~� 1=(
 � 1) + ~U2=(2~c2)

1CCCA(110)

The 
uctuation distribution formulae

S1�u
n+1
1 = S1�u

n
1 + �

2Ca(r
� � �r�)

S2�u
n+1
2 = S2�u

n
2 + �

2Ca(r
� + �r�)

S3�u
n+1
3 = S3�u

n
3 + �

2Ca[(r
� + �r�) + (r� � �r�)]

(111)

will result in an upwind scheme provided we de�ne the arti�cial viscosity terms r�; r�.
However, before doing this we would like to rewrite (111) for the update of the \reg-
ular" conservative variables u = (�; �u; �v; e)T . Note that

u = � � �u(112)

where

� =

0BBB@
1 0 0 0
0 nx1=� ny1=� 0
0 nx2=� n

y
2=� 0

0 0 0 1

1CCCA(113)

Introducing the following matrix

C�
a = � � Ca =

0BBB@
1 0 0 1=~c2

~u nx1=� n
y
1=� ~u=~c2

~v nx2=� ny2=� ~v=~c2

~U2=2 ~� ~� 1=(
 � 1) + ~U2=(2~c2)

1CCCA(114)

we obtain the 
uctuation distribution formulae for the \regular" conservative variables

S1u
n+1
1 = S1u

n
1 + �

2C
�
a(r

� � �r�)

S2u
n+1
2 = S2u

n
2 + �

2C
�
a(r

� + �r�)
S3u

n+1
3 = S3u

n
3 + �

2C
�
a [(r

� + �r�) + (r� � �r�)]

(115)
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The relationship between the arti�cial viscosity and the 
uctuations is given by

�r� = M�r
�

�r� = M�r
�(116)

where

M� =

(
M sub

� ; if j~�j � ~c

M
sup

� ; if j~�j > ~c;
(117)

and

M� =

(
M sub

� ; if j~�j � ~c

M sup
� ; if j~�j > ~c;

(118)

M sub
� =

0BBB@
sign(~�) 0 0 0

0 0 0 1=~c
0 0 sign(~�) 0
0 ~c 0 0

1CCCA ;(119)

M sub
� =

0BBB@
sign(~�) 0 0 0

0 sign(~�) 0 0
0 0 0 1=~c
0 0 ~c 0

1CCCA ;(120)

and

M sup
� = sign(~�)I;(121)

M sup
� = sign(~�)I:(122)

A linearity preserving scheme can be constructed by introducing the vectors
r�

�

; r�
�

with their elements de�ned by

r�
�

i = r�i + 	(qi)r
�
i

r�
�

i = r�i +
	(qi)
qi

r�i
(123)

for i = 1; 2; 3; 4, where

qi = �r
�
i

r
�
i

(124)

and substituting them instead of r�; r� respectively in (115),(116).
Remark 5.1. In order to construct a non-oscillatory linearity preserving scheme

for the Euler equations, derivatives can be approximated along any two out of three
faces of the triangle. However, the resolution of such features of the 
ow as shocks,
contact discontinuities and shear layers can be a�ected by the particular choice (see
x8). Shocks are being resolved better (i.e. are represented by sharper numerical layers)
if the numerical derivatives are computed along those two faces of the triangle which
are the closest to the direction of the shock. The same is true for the shear layers and
contact discontinuities, although the two faces closest to the discontinuity direction in
this case will also be either two in
ow or out
ow faces of the triangle.
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6. Outline of the extension to three dimensions. A detailed description of
the three-dimensional schemes both for the scalar advection and Euler system will be
given elsewhere. In this paper we only outline brie
y their construction in the case of
structured Cartesian grids. Each cube having grid nodes as its vertices can be divided
into two prisms. The prism can be divided into three tetrahedra each. Any of the
obtained tetrahedra will have 3 of its edges parallel to x; y and z axes respectively.
We shall utilize this in this section to make the presentation free of the unnecessary
details related to the non-orthogonal coordinate systems. The construction of the

uctuation-splitting schemes both for the scalar advection and the Euler system will
be outlined for the case of the tetrahedron T as illustrated on Fig.5.

6.1. Advection scheme in three dimensions. Consider a scalar constant co-
e�cient advection equation in three dimensions

ut + aux + buy + cuz = 0(125)

The 
uctuation of this equation on the tetrahedron T (see Fig.5), whose volume is
V = h3=6.

R = Rx +Ry +Rz(126)

where

Rx = �h2

6 [a(u3 � u4)]

Ry = �h2

6 [b(u2 � u3)]

Rz = �h2

6 [c(u1 � u2)]

(127)

The 
uctuation distribution formulae are given as follows

V un+11 = V un1 + �
2Ca(Rz + �Rz)

V un+12 = V un2 + �
2Ca[(R

y + �Ry) + (Rz � �Rz)]
V un+13 = V un3 + �

2Ca[(Rx + �Rx) + (Ry � �Ry)]

V un+14 = V un4 + �
2Ca(R

x � �Rx)

(128)

It is easy to see that the following choice of the arti�cial viscosity

�Rx = sign(a)Rx

�Ry = sign(b)Ry

�Rz = sign(c)Rz

(129)

results in a regular upwind scheme.
Introducing the following quantities

Qx =
[Ry ]�x + [Rz ]�x

Rx + [Ry ]+x + [Rz ]+x
(130a)

Qy =
[Rx]�y + [Rz ]�y

Ry + [Rx]+y + [Rz ]+y
(130b)

Qz =
[Rx]�z + [Ry ]�z

Rz + [Rx]+z + [Ry ]+z
(130c)
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where

[R�]+� =

(
R�; if sign(R�) = sign(R�);
0; otherwise;

(131)

and

[R�]�� =

(
0; if sign(R�) = sign(R�);
�R� ; otherwise.

(132)

or

[R�]�� = [R�]+� � R�(133)

where � and � stand for one of (though di�erent) x; y or z each.
Then we de�ne the following quantities

Rx� = Rx +	(Qy)Ry +	(Qz)Rz

Ry� = Ry + 	(Qx)Rx +	(Qz)Rz

Rz� = Rz + 	(Qx)Rx + 	(Qy)Ry

(134)

where 	 is a non-compressive limiter.
Substituting Rx� ; Ry� ; Rz� into (128),(129) instead of Rx; Ry ; Rz respectively we

obtain a linearity preserving (second order accurate in this case) positive advection
scheme.

To demonstrate this we can assume without loss of generality that

Qy �Qz � 0
Qx(Qy +Qz) � 0

(135)

Then

Qy = �Rx=(Ry +Rz)
Qx � 1=Qy

Qz � Qy

(136)

In this case

	(Qy)Ry +	(Qz)Rz � �	( 1
Qx )R

x

	(Qx)Rx � �	(Qy)(Ry +Rz)
(137)

and therefore

Rx� = (1�	( 1
Qx ))Rx

Ry� = (1�	(Qy))Ry

Rz� = (1�	(Qz))Rz

(138)

It can be concluded that if 	 is a non-compressive limiter, then the constructed scheme
is positive.

If the 
uctuation R vanishes then

Rx = Ry + Rz(139)

and, therefore,

Qx = Qy = Qz = 1:(140)

Then it is easy to see that

Rx� = Ry� = Rz� = 0;(141)

provided 	(1) = 1, i.e. the constructed scheme is linearity preserving.
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6.2. Euler system. Euler equations in three dimensions

ut + F (u)x +G(u)y +H(u)z = 0(142)

where

u =

0BBBBB@
�
�u

�v
�w

e

1CCCCCA ;

F (u) =

0BBBBB@
�u

�u2 + p
�uv

�uw
u(e+ p)

1CCCCCA ; G(u) =

0BBBBB@
�v

�uv
�v2 + p

�wv
v(e+ p)

1CCCCCA ; H(u) =

0BBBBB@
�w

�wu
�wv

�w2 + p
w(e+ p)

1CCCCCA
Introducing the auxiliary variables (s; u; v; w; p) we can rewrite these equations in the
following non-conservative form

st + usx + vsy + wsz = 0
�ut + �uux + �vuy + �wuz + px = 0
�vt + �uvx + �vvy + �wvz + py = 0
�wt + �uwx + �vwy + �wwz + pz = 0
pt + upx + vpy + wpz + �c2(ux + vy + wz) = 0

(143)

Fluctuation on tetrahedron T (see Fig.5) is

R =
Z Z Z

ut = �
Z Z Z

(F x +Gy +Hz)dx dy dz

= �VT [dF x +dGy + dHz ](144)

Fluctuation in auxiliary variables on each tetrahedron can be represented as a sum of
three parts

r = rx + ry + rz(145)

The matrix Ca relating the 
uctuations in conservative variables R to those in the
auxiliary variables

Ca =

0BBBBB@
1 0 0 0 1=~c2

~u 1 0 0 ~u=~c2

~v 0 1 0 ~v=~c2

~w 0 0 1 ~w=~c2

~U2=2 ~u ~v ~w 1=(
 � 1) + ~U2=(2~c)

1CCCCCA(146)

It was pointed out in [16] that the two-dimensional conservative linearization presented
there extends to three dimensions in a straightforward way. Again, we assume that
the quantity that varies linearly on the tetrahedron T is the \parameter-vector" and
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the averaged quantities can be de�ned in a manner similar to the two-dimensional
case. The 
uctuation in the auxiliary variables on T can be written as follows

r = �ST � ~A � rx = �ST ~A � (csx;d�ux;d�vx; d�wx;cpx)T(147)

The 
uctuation distribution formulae in this case are

V un+11 = V un
1 + �

2Ca(r
z + �rz)

V un+12 = V un
2 + �

2Ca[(r
y + �ry) + (rz � �rz)]

V un+13 = V un
3 + �

2Ca[(rx + �rx) + (ry � �ry)]

V un+14 = V un
4 + �

2Ca(r
x � �rx)

(148)

Similarly to the two-dimensional case, the relationship between the the arti�cial vis-
cosity needed in x-direction to obtain the upwind scheme and rx is the following

�rx = sign( ~A)rx:(149)

�ry and �rz can be evaluated in a similar way.
Denoting

Mx = sign( ~A)

it can be veri�ed that

Mx =

(
M sub

x ; if j~uj � ~c
M sup

x ; if j~uj > ~c;
(150)

where

M sub
x =

0BBBBB@
sign(~u) 0 0 0 0

0 0 0 0 1=~c
0 0 sign(~u) 0 0
0 0 0 sign(~u) 0
0 ~c 0 0 0

1CCCCCA(151)

and

M sup
x = sign(~u)I(152)

Following the procedure of constructing a high resolution scalar advection scheme in
three dimensions, presented brie
y in x6.1 we de�ne the following quantities

qxi =
[ryi ]

�
x + [rzi ]

�
x

rxi + [ryi ]
+
x + [rzi ]

+
x

(153)

q
y
i =

[rxi ]
�
y + [rzi ]

�
y

ryi + [rxi ]
+
y + [rzi ]

+
y

(154)

qzi =
[rxi ]

�
z + [ryi ]

�
z

rzi + [rxi ]
+
z + [ryi ]

+
z

(155)
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where [. . .]�x ; [. . .]
�
y ; [. . .]

�
z are de�ned by (131),(132). Now we can introduce

rx
�

i = rxi +	(qyi )r
y
i +	(qzi )r

z
i

ry
�

i = ryi + 	(qxi )r
x
i +	(qzi )r

z
i

rz
�

i = rzi + 	(qxi )r
x
i + 	(q

y
i )r

y
i

(156)

for i = 1; :::; 5.
Substituting rx

�

; ry
�

; rz
�

instead of rx; ry ; rz into the 
uctuation distribution for-
mulae (148) and (149) we obtain a linearity preserving (second order accurate for the
case of structured meshes) genuinely three-dimensional scheme for the Euler equations.

Note that

r � rx + ry + rz � rx� + ry� + rz� :(157)

Therefore, the constructed scheme is conservative. It is also easy to see that it is
linearity preserving.

7. Multigrid solver. One of the most attractive properties of the constructed
multidimensional scheme for the Euler equations is that the Collective Gauss-Seidel
relaxation is stable when applied directly to the high-resolution discrete equations.
This can be utilized to construct a very simple and e�cient steady-state multigrid
solver. In this work we would like just to illustrate the basic advantages of the multigrid
solver that uses the constructed multidimensional scheme. Therefore, we do not discuss
here any issues concerning the multigrid algorithm for general unstructured meshes,
but address the interested reader to the literature (see, for instance, [11]).

We shall present brie
y in this section the simple multigrid algorithm used in the
numerical experiments presented in this work.

Description of the algorithm. The multigrid cycle used in this work is W -cycle
and the entire algorithm can be implemented either as Cycling or as Full Multigrid
(FMG).

Relaxation. The algorithm employs the Collective Gauss-Seidel relaxation as a
smoother. In order to update the solution at each node a system of four nonlinear
equations has to be solved. This can be done using the Newton method. One iteration
at each node is su�cient for this purpose (see [18] for the discussion on this matter).
The ordering of the relaxation can be Red-Black, lexicographic etc.

Restriction and prolongation. Assume that we have a hierarchical sequence of tri-
angular grids, i.e. that any triangle on the coarser grid is a union of four triangles
on the �ner grid. The natural choice for prolongation in this case would be a linear
interpolation along each face of the triangle belonging to the coarser grid. The re-
striction in this case can be just combining the 
uctuations from the four �ner grid
triangles forming the coarse grid one. However, we consider only Cartesian grids in
the numerical experiments presented in this work (see Figs.2,3). In this case we can
use more conventional prolongation and restriction operators: bilinear correction in-
terpolation and Full-Weighting of the residuals (see [1]). Term \residual" is used here
in its usual sense: residual of the discrete equation at each gridpoint (constructed of
the contributions from the triangles having this gridpoint as a common vertex).
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Previous relevant results. Application of multigrid methods for the advection equa-
tion was studied in details in [17],[18] in conjunction with the genuinely two-dimensional
control-volume type scheme developed there. It was demonstrated there that applying
2FMG�W (2; 1) algorithm is su�cient to obtain high quality solutions (i.e. solutions
with sharply resolved discontinuities and second order accuracy both in smooth regions
and in discontinuity location) for the advection equation. Many of the conclusions of
[17],[18] apply directly to the Euler system case considered in this work.

E�ciency of the multigrid solver for advection-dominated problems. It was shown
in [1] that the residual reduction per multigrid cycle for an advection (dominated)
problem cannot in general be better than .75 for the second order accurate discretiza-
tion (.5 for the �rst order). This is because the coarse grid provides only a fraction (.75
or .5 respectively) of the needed correction for some components. The ability of the
multigrid algorithm to achieve rate of convergence close to .75 (for the second order
accurate approximation) means that the obstacle towards achieving a better e�ciency
are not the smoothing properties of the relaxation but rather an unsu�cient coarse
grid correction for certain components. (see x9.2.2 for further discussion on this issue).

8. Numerical experiments. The purpose of the numerical experiments re-
ported in this section is to verify the robustness of the constructed scheme and the
quality of the numerical solutions obtained by its means. Some preliminary experi-
ments illustrating the performance of the multigrid algorithm that utilizes this scheme
are presented as well.

8.1. Supersonic 
ow in a channel with a bump. The test case considered
here is a supersonic (Mach=2.9) 
ow in channel with a circular bump. The bump is
located at the lower wall of the channel at 1 � x � 2. and its surface is a circular arch
of �=3 and radius 1. Note that the actual shape of the domain is a rectangle. The
in
uence of the bump on the 
ow is imposed through the boundary conditions: the
velocity component normal to the surface of the bump at a certain location is being
re
ected.

The �rst experiment uses a grid of the size 200� 40 points. The density contour
plots of the steady-state solution are presented on Fig.6(a). The scheme used is the
one given by (71),(72), (73) in x4 with the minmod limiter.

The second experiment presented on Fig.6(b) corresponds to the same settings,
except that the grid is twice �ner (400 � 80 points). As it is expected, the grid
re�nement results in a better resolution of the 
ow features.

The third experiment (Fig.6(c)) is performed on the grid of the same size as
the �rst one. However, the triangulation is as illustrated on Fig.3 and the scheme
employed is constructed according to (115),(116),(123) in x5 and the derivatives are
approximated using the diagonal and parallel to the x direction faces of the triangles.
Even though the grid is structured, the most essential feature of the unstructured grid
formulation of the scheme - use of the non-orthogonal coordinate system is present.

The purpose of this experiment is to test the performance of such a scheme and to
illustrate the e�ect of the scheme and triangulation on the resolution of discontinuities.
It can be seen on Fig.6(c) that the shock re
ected from the upper wall is resolved better
than the stronger one that is incident to the upper wall. This is because for this
scheme/grid combination discontinuities whose direction is close to the grid diagonal
(upper-left to lower-right) will be resolved very well (in addition to those which are
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close to the horizontal or vertical directions).

8.2. Transonic 
ow over a circular bump. The testcase considered here is
a transonic 
ow (free-stream Mach= :9) over a 
at wall with a bump (Fig.7). The
surface of the bump is a circular arch of �=3 and radius 1 and its location is between
3:5 � x � 4:5. Again, in order to keep the experiments simple at this stage of work,
the bump is treated the same way as in the previous experiments. The grid is 200�200
points and the scheme used is presented in x4. The shock of the \�sh-tail" shape can
be clearly observed on Fig.7.

8.3. Low Mach number 
ow over a circular bump. Here we present a
numerical experiment concerning a low Mach number (=.1) 
ow over a 
at wall with
a circular (arch of �=3 and radius 2) bump. Here as well as in the previous case
the presence of the bump is imitated through the appropriate boundary conditions.
The grid is 200 � 200 points. The density contours of the steady-state solution are
presented on Fig.8.

8.4. Multigrid algorithm. To illustrate the performance of the multigrid algo-
rithm we consider here the well known testcase of a shock re
ecting from a 
at wall.
The multigrid algorithm involves �ve grids (levels): the �nest consists of 129 � 33
points, the coarsest { 9� 3 points.

The multigrid algorithm is based on the scheme presented in x4 used with the
lexicographic Gauss-Seidel relaxation. The restriction and prolongation procedures
are the standard Full Weighting of the residuals and bilinear correction interpolation.
The �rst experiment of the �rst concerns performing one W (2; 1) cycle. Fig.9(a)
presents the initial guess and Fig.9(b) { the numerical solution obtained by oneW (2; 1)
cycle. It is remarkable that such a little computational work is su�cient to make the
re
ected shock is clearly visible. The numerical solution to this problem obtained by
2FMG�W (2; 1) algorithm is presented on Fig.9(c).

Note, that in this case the 
ow is aligned with the x-direction in the signi�cant
part of the domain. In this case the arti�cial viscosity in the cross-stream direction in
the entropy and u-momentum equations (see x4) vanishes. Therefore, no smoothing
can be obtained in y-direction in some components. A multigrid algorithm utilizing
the time-stepping type relaxation can deal with such a situation only using the semi-
coarsening technique. Our algorithm employs the Gauss-Seidel relaxation. Therefore,
it o�ers a much simpler and more e�cient treatment of this problem: relaxation with
lexicographic ordering in the stream direction.

The rate of convergence observed in this testcase as well as in other simple ex-
periments concerning variety of 
ow regimes is very close to .75 (see xx7,9.2.2 for a
discussion).

9. Discussion and conclusions.

9.1. Summary of the current work. A new two-dimensional high-resolution
(at the steady-state) scheme for the compressible Euler equations was presented. It
is triangle-based and can be formulated with the same degree of simplicity both on
structured and unstructured grids. The main advantage of this scheme is that Gauss-
Seidel relaxation can be applied directly to the resulting discrete equations. This
allows to construct a simple and e�cient multigrid steady-state solver.

A remarkable property of the constructed scheme is also its very compact stencil:
it involves only the immediate neighbors of the point of interest.
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A variety of the 
ow regimes (supersonic, transonic and low Mach number 
ow)
were considered in the numerical experiments to verify the quality of the solutions
obtained by means of the constructed scheme and to demonstrate the e�ciency of the
multigrid algorithm.

Generalization of this scheme to three dimensional tetrahedral meshes is presented
brie
y as well.

9.2. Future work.

9.2.1. Compressible Navier-Stokes equations. The extension of the con-
structed scheme to the case of compressible Navier-Stokes equations is straightforward.
It is interesting to note that the arti�cial viscosity present in the momentum equations
in the subsonic case contains already terms of the type (ux+ vy)x and (ux+ vy)y that
appear in the physical viscosity of the compressible Navier-Stokes equations.

9.2.2. Further improvement of the multigrid e�ciency. As it was men-
tioned in x7 the main obstacle towards the further improvement of the multigrid
e�ciency is the following fact: for the hyperbolic problems the coarse grid correction
is not su�cient for certain error components.

This di�culty was already addressed in the literature and some techniques to
improve the multigrid e�ciency were developed in [2]. Therefore, one possibility is to
adapt these techniques for our case - compressible Euler equations.

We shall mention here another way to deal with this di�culty. The steady-state
compressible Euler equations in subsonic case are very similar from the mathematical
point point of view to the incompressible Euler equations { both problems are of the
mixed elliptic-hyperbolic type.

There exist very e�cient steady-state multigrid solvers for the incompressible 
ow
equations, which rely on the primitive variables formulation (velocities and pressure).
Most of them employ staggered grid discretization of the equations. A typical e�ciency
of such algorithms for a low Reynolds number case is comparable to that for the Poisson
equation. Although the converegence rate deteriorates for the advection dominated
(high Reynolds number) case, it may still be possible to recover the optimal e�ciency
by treating the advection factor in some special way (like relaxing in the 
ow direction).
This is achieved due to a certain \separation" of the elliptic and hyperbolic factors of
the equations in the treatment (see [1]).

However, extending this approach to the compressible Euler equations appeared
to be a very di�cult problem despite the similarity of the equations.

A canonical variable formulation of the Euler equations for both incompressible
and compressible cases was suggested recently by Ta'asan [23]. This formulation
facilitated the construction of the discrete scheme (using staggered grids) and of the
relaxation procedure that separate a treatment of the advection and full-potential
factors (see [24]). The resulting multigrid algorithm achieves a very good e�ciency in
subsonic case if the relaxation is performed in the 
ow direction.

One of the future directions is to modify the scheme presented in this work so that
it will allow to achieve a similar e�ciency for the case of triangular (non-staggered
and, possibly, unstructured) grids. This may be possible because some very impor-
tant similarities between the present scheme and the existing discretizations for the
incompressible 
ow equations used in very e�cient multigrid solvers (see, for instance,
[1]) can be observed (see x9.3). The resulting discretization will rely on the primitive
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rather then the canonical variables. The latter is crucial for the further generalization
of the solver to the compressible Navier-Stokes equations.

9.2.3. Time-dependent problems. The constructed scheme is capable of pro-
ducing high-resolution (second order accurate on the structured grids) steady-state
solutions for the compressible Euler equations. A very natural way to extend this
capability to the transient problems is to use a Lax-Wendro� type modi�cation of the
constructed scheme, i.e. to scale the arti�cial viscosity in such a way that it will cancel
the time error of the forward Euler time-stepping due to the equation (or system of
equations) being solved.

To illustrate this on the simple case of the two-dimensional advection consider the
scheme for the structured grids presented in x2.1.2. The use of the following arti�cial
viscosity

�Rx = �
h
aRx

�Ry = �
h
bRy :

(158)

instead of one given by (5) results in the high-resolution scheme (constructed by sub-
stituting Rx� ; Ry� de�ned by (6) instead of Rx; Ry) that is second order accurate in
time and space. However, it is easy to see that in in general this scheme is not of the
positive type anymore (see also [6]).

For the case of the Euler system modifying the construction of the high-resolution
scheme presented in x4 by substituting the arti�cial viscosity de�ned as follows

�rx = �
h
~Arx

�ry = �
h
~Bry

(159)

instead of (72), results in a Lax-Wendro� type scheme for the Euler system. However,
the applicability of this scheme is restricted to the problems with with no strong
shocks.

It is interesting to note that the two-dimensional schemes by Colella [3],[4], LeV-
eque [10], Radvogin [12] can be interpreted as the schemes of the Lax-Wendro� type.
However, the nonlinear mechanism that enables them to deal with (strong) shocks
relies on one-dimensional limiters and characteristic variables in x and y direction,
which introduces an essential 
avor of dimensional splitting.

The �rst step towards the construction of a genuinely multidimensional time-
space accurate and robust Euler scheme should be to construct a positive time-space
accurate scalar advection scheme of the type Lax-Wendro� type. This is one of the
direction being currently investigated.

9.3. What is a truly multidimensional scheme ?. Perhaps, it will be easier
to answer this question after the nonoscillatory time-space accurate multidimensional
scheme for the compressible Euler equations is constructed. However, some attributes
of the truly multidimensional schemes can be seen already on the example of the
scheme constructed here.

One of the main characteristics of a truly multidimensional scheme for 
uid dy-
namics is that the divergence operator (in the pressure equation, the auxiliary variables
formulation of the Euler system (56) should be represented in a di�erence scheme as
whole. This is not the case for the dimensionally split schemes. It can be clearly seen
on the example of the dimensional upwinding scheme (71),(72) that terms ux and
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vy are separated (when contributing to the arti�cial viscosity of the momentum and
pressure equations).

Consider the case of subsonic 
ow. In this case the 
uctuation of the pressure
equation contributes to the arti�cial di�usion of the momentum equations. Let us
modify slightly the scheme constructed in x4. and compute the 
uctuation of the pres-
sure equation contributing to the arti�cial viscosity terms of the momentum equation
according to the following

rx
�

4 � ry
�

4 = rx4 + ry4 :(160)

The only di�erence between (160) and (73) is that the limiter function is set to unity.
Although

rx
�

4 + ry
�

4 = 2r4 6= r4;

such a scheme is conservative, since (160) is used only in the arti�cial viscosity. This
is because the role of the arti�cial viscosity can be interpreted as \redistribution" of
the 
uctuations split by the central scheme - to subtract a certain amount from one
vertex of the triangle and to add the same amount to another vertex. This does not
violate conservation, regardless of what amount has been \redistributed".

Recall, that for some very popular schemes for incompressible 
ow computations
(see, for instance, [1]) the residual of the continuity equation contributes to the veloc-
ities update in such a way that the discrete vorticity remains unchanged.

The \physical" meaning of this is that the change in (evolution of) the vorticity
is only due to the residuals of the momentum equations, as one would expect.

\Mathematical" meaning of this fact is that the elliptic factor of the incompressible
Euler equations is being discretized and relaxed as such. This allowed to construct a
highly e�cient multigrid solver (see [1]).

What can be observed clearly in the subsonic case is that the 
uctuation of the
pressure equation (being a part of arti�cial di�usion of the discretized momentum
equations) contributes to the change of the velocities (divergence update) according
to exactly the same pattern as the residual of the continuity equation in the schemes
for discretizing the equations of incompressible 
ow.

Thus, the scheme presented in this work establishes a link between some standard
techniques used for solving equations of the incompressible 
ow and the class of upwind
schemes commonly used for compressible 
ow computations.
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Fig. 6. Supersonic 
ow in a channel over a circular bump: a) grid 200 � 40 pts., triangulation I,
scheme from x4; b) the same, except the grid 400 � 80 pts.; c) grid 200 � 40 pts., triangulation II,
scheme according to x6, which relies on the approximate derivatives along the nonorthogonal faces of
the triangles.
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Fig. 7. Transonic 
ow over a wall with a circular bump (free stream Mach= :9).
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Fig. 8. Low speed 
ow (Mach= :1) over a wall with a circular bump.
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Fig. 9. Performance of the multigrid algorithm, grid 129 � 33 pts.: a) initial guess; b) result of
applying one W (2; 1) cycle; c) solution obtained by 2FMG�W (2; 1) algorithm.
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